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Poissonian Asymptotics of a Randomly Perturbed 
Dynamical System: Flip-Flop of the Stochastic 
Disk Dynamo 
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A dynamical system with two stable equilibrium points will show a flip-flop 
motion between the neighborhoods of the two points when it is perturbed by 
small random noises. A typical example is the stochastic disk dynamo model 
where the two equilibrium points correspond to the two polarities of the earth's 
magnetic field. We prove what has been suggested by a computer simulation, 
that the counting process of the flips or the reversals of the earth's field con- 
verges to a standard Poisson process if the time is suitably scaled. 

KEY WORDS: Poisson; asymptotics: small random perturbation; reversal of 
the earth's magnetic field. 

1. I N T R O D U C T I O N  

Geophysical phenomena sometimes offer novel stochastic features which 
are difficult to find in laboratory experiments of limited time span. Analysis 
of paleomagnetic data reveals that the earth's magnetic field has reversed 
its polarity many times, ell One of the most interesting statistical properties 
of the reversals is that their counting process is a Poisson process. 

A random walk model between the two states will be sufficient just to 
account for" the Poisson pi'operty. However, from a physical point of view, 
we need to take account of the dynamo action. The first step will be to find 
the simplest model which satisfies a minimal requirement for the statistical 
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42 Ito and Mikami  

properties, that is, the symmetric intensity distribution around the two 
polarities as well as the above Poisson property, together with ergodicity. 

In one approach, the statistical properties are attributed to chaos of 
deterministic systems composed of a couple of disk dynamos. See ref. 2 for 
present status of this approach. The other approach regards the reversals 
as a result of perturbations on a single disk dynamoJ 3"4~ Honkura and 
Matsushima, 141 in particular, emphasized the importance of the random- 
ness of the perturbations. One of the authors proposed independently a 
stochastic model] 5~ following the recipe by van Kampen ~6~ and Kubo 
et al. ~7~ This model, called the stochastic disk dynamo model, describes a 
system of mutually interacting single disk dynamos, and is expressed by a 
two-dimensional dynamical system subject to small random perturbations. 
The unperturbed nongradient dynamical system has two stable equilibrium 
points corresponding to the two polarities of the earth's magnetic field. The 
perturbations showing the effects of the eliminated degrees of freedom 
other than the dipole field are of order of the inverse of the number of 
interacting disks. 

The stochastic disk dynamo model was shown to exhibit a symmetric 
intensity distribution and ergodicity. Computer simulation suggested the 
Poisson property, but sometimes resulted in a substantial deviation 
depending on the system parameters. So it remains unclear whether the 
stochastic disk dynamo model can serve as a model of reversal fulfilling the 
minimal requirement mentioned above. 

Later, a mathematical justification for the Poisson property was given 
for a one-dimensional simplified version with a double well potentialJ 8~ 
The purpose of the present paper is to give a justification to the original 
two-dimensional model. 

Efforts from practical ~9' ~o~ as well as mathematical ~'24j viewpoints 
have been devoted to the asymptotics of dynamical systems subject to 
small random perturbations. The problem discussed here will be new in 
two respects. First, instead of a relaxation from a metastable state to a 
stable state, we are interested in a flip-flop motion between equally stable 
two states. Second, unlike most work which is concerned with the ensemble 
averaged properties, we deal with pathwise properties, the importance of 
which was emphasized by Cassandro et  al. ~2) 

We arrange the paper as follows. In Section 2 we give a definition of 
the stochastic disk dynamo model together with its physical background 
and mathematical properties. The main result is given in Section 3, 
Theorem 3.1, which assures that the counting process of the reversals, IT, 
of (3.3), converges in the limit of small perturbation to a standard Poisson 
process if the time is scaled suitably. It is proved by preparing two theorems 
in Section 3, proofs of which are given in the following subsections. 
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2. S T O C H A S T I C  D ISK D Y N A M O  M O D E L  

The stochastic disk dynamo model is described by the following 
stochastic differential equation for t >t 0, x = (x~, x2) e R% e > 0, 

dX~(t, x)  = b(X~(t, x ) )  dt + e 1/2 dW( t )  
(2.1) 

X~(0, x) = x 

where W(.) is a two-dimensional Wiener process, ~131 and b(x)=  
(bl(x) ,  bz(x))  is given by 

b l ( x t ,  x2) = -~ tx l  + xl  xz  
(2.2) 

b , ( x l ,  x2)= -vx~ + 1 -  x~ 

Here l~ and v are positive constants such that vlt < 1. 
This model describes a system of several mutually interacting disks. 

The variables x~ and x2 physically stand for the current running through 
the coil and the angular velocity of the disks, respectively, and 1/e has a 
meaning of the number of disks. See ref. 5 for further physical background 
and some related mathematical arguments. 

The deterministic equation (2.1) with e = 0  is called the single-disk 
dynamo model, which does not show a reversal of polarity, i.e., a change 
of the sign of X ~ In fact, since v/t < 1, {X~ x)} has three equilibrium 
points ~ H, ~5~: a hyperbolic equilibrium point 

H(0, 1/v) (2.3) 

and exponentially stable equilibrium points 

F+(2, ~), F _ ( - 2 , ~ )  (2.4) 

where 

2 = (1 - p v )  JI2 (2.5) 

On the other hand, the stochastic disk dynamo exhibits reversals. 
More precisely, the solution to (2.1) exists, is positively recurrent, and has 
a unique in.variant probability density function, ~ ~5. ,61 since 

( x, b(x) ) = xl(  -~ tx l  + x ,  x2) + xz( -- vx2 + 1 -- x~) 

= - ~ c ' q  - vx;_ + x 2  

<~ -lcx'~ --(v/2)x~ + 1/(2v) 

~< --min(zt, v/2) Ixl 2 + 1/(2v) (2.6) 
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Here we used 

x 2 = v-'/2v'/2x2 <~ { I / v +  vx~}/2 

The regions {x~R- ' :x ,  > 2 - ~ }  and { x e R 2 :  x, < - 2 + 6 }  are under- 
stood as the normal polarity and the reversed polarity of the earth's field, 
respectively, where 6 E(0 ,2 )  is a parameter to be determined by 
paleomagnetic observation. We will discuss the asymptotics of the flip-flop 
motion of X ~ between the two polarities in the limit of e--, 0. 

3. M A T H E M A T I C A L  R E S U L T S  

For the stochastic process {X~(t, X)}o.< . . . .  determined by (2.1), we 
consider a sequence of stopping times { r,'i(x; 3)},,>/o defined by the follow- 
ing: for fie(O, 2) and x = ( x ~ , x _ , ) ~ R  2 for which [x~l~>2-d ,  put 

for n~>0. 

r;(x; ~) = 0 

I inf{ t > r,~(x; fi); 2 - 6 ~< X~(t, x)} 
�9 E t :  . .  ff X~(r,,(.x, ~), x) ~< - 2 + ~ 

r,~+ )(x; 3 ) =  )inf{ t > r,,(x; ~ 3); X,(t,~ x) -<..~ - 2  + ~} 

if 2 - 8  ~< X~(r,~(x; ~), x) 

Take fl~(6) > 0 so that 

(3.1) 

P(r~(F+ ; 3) > fl~(6)) = P(r](F_ ; 6) > fl"(3)) = e -  J (3.2) 

which is possible since (X](. ,  (x l, x2)), X~(., (xl, x2))) has the same prob- 
ability law as that of ( - X ~ ( . ,  ( - x t ,  x2)), X~(., ( - x ~ , x 2 ) ) )  [see (2.2)]. 
Here F• and 2 are defined in (2.4) and (2.5), respectively. 

Put fl~= fl~(2/2)> 0, and consider the following stochastic process: 

Y' ( t ;x ,  6 ) = n  if r,~i(x;iJ)<~fl~t<r,';+~(x;~5) (3.3) 

Denote by DN[0, ~ )  the space of right continuous functions f :  [0, co) 
N with left limits. DN[0, or) is given the Skorohod topology/2~ 

The following is our main result. 

Theorem 3.1�9 For any ~ ~ (0, 2) and any x for which Ix, l~ A-& 
{Y~(t;x,  6)}o~,<~_ converges, as e---,0, in distribution in DN[0, ov) 
(ref. 21) to a Poisson process with parameter 1/~7~ 
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Theorem 3.1 can be proved by the following Theorems 3.2 and 3.3, 
proof of which will be given in Sections 3.2 and 3.3. It is standard to prove 
Theorems 3.2 and 3.3 from Theorem 3.4 in Section 3.1. Theorem 3.2 ensures 
that any finite dimensional marginal distribution of { Y"(t;x,d)}o~,<.~_ 
converges, as e---,0, to that of a Poisson process with parameter 1. 
Theorem 3.3 and Corollary 7.4, p. 129, of ref. 21 guarantee the tightness of 
{ Y~(t;x ,  6)}o,<,<~. 

T h e o r e m  3.2. For  any d e (0, 2) and r >  0, the following holds: for 
any l e N  and any 0 =no~<n~ ~< -.. <~nt, 

lim P( Y~(t~ ; x, d} = n  I ..... Y~(t~; x, d ) = n / )  
c ~ O  

/ 

= H ( t i - - t i - I ) " - " i - ' e x p [ - - ( t i - - t i - l ) ] / ( l l i - - n i - I ) !  (3.4) 
i = l  

uniformly in x e U,.(o) c~ { y; [y~ I 1> 2 - fi} and 0 = to < t~ < ..- < t~ < oo. 

Here and in the following, UAx) = { y ~ R'-; Ix - y[ < r} for x e R 2 and 
r > 0, and the symbol o stands for the origin. 

R e m a r k  3.1. Roughly speaking, Theorem 3.2 means that 
[ r,':, + t(x; d) - r,~i(x; d) ]//?~ (n ~> 0) are, for sufficiently small e > 0, independ- 
ent of each other [from the strong Markov property of X~(t, x)] ,  and have 
exponential distributions, from which we can believe that Theorem 3.1 is 
trueJ ~7~ 

Before stating Theorem 3.3, we give some notation. 
For r > 0 ,  T > 0 ,  a n d f e D N [ 0 ,  m), put 

co'(f, r, T ) ~  inf{max sup If(t) -f(s)l} (3.5) 
i s . t ~ [ t i - l ,  ti) 

where the infimum is taken over all partitions {t~} for which 
0 = t o < t l  < ... < t , ,_ l  < T ~ t , ,  with m i n ~ ; ~ , , ( t i - t ~ _ ~ ) > r  and over all 
n>~ 1. 

T h e o r e m  3.3. For any d e (0, 2) and r >  0, the following holds. 
(I) For any 9' > 0 and t > 0, there exists Nr. , ~ N such that 

l i m s u p ( s u p { P ( r ~ ( t ; x ,  6)>~N~,,); Ix] < r ,  [xj] > ~ 2 - d } )  <), (3.6) 
t : ~ 0  

(II) For any ~ > 0  and T > 0 ,  there exists ? > 0  such that 

lim sup (sup{ P(co'( Y~( .; x, d), ?, T) >/y); Ix[ < r, [xl[/> 2 - 6 }  ) < 7 (3.7) 
g ~ O  
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3.1. Special  Case of T h e o r e m  3.2. 

In this subsection, we prove Theorem 3.4, which can be proved almost 
in the same way as Theorem 1 of ref. 22 and which is a special case of 
Theorem 3.2 with / = 1  and n~=0,  dealing with asymptotics of exit 
probabilities. Closely related problems have been discussed in refs. 18, 19, 
and 23. 

T h e o r e m  3.4. For any 6 e (0, 2) and r > 0 

lim P(r](x; 6) > fl~(2/2)t) = e - '  (3.8) 

uniformly in xE U,.(o) n {y; lyll  >~2-6} and t>~0. 

Let us explain how to arrange the proof of Theorem 1 of ref. 22 to 
prove Theorem 3.4. 

We note that the following four conditions hold for R > Ro if Ro > 0 
is sufficiently large. 

(R1) U~(F+)w U;~(F_)c UR(o). 
(R2) We have 

(x, b(x)) < 0  

for all xEOUR(o) [see (2.6)]. 

(R3) For a n y x ~ 0 U R ( o ) c ~ { y ; y ~ < 0 } ,  

Here we put 

VR(x) > VR(H) 

VR(y) = inf {f~ [dq~(s)/ds-b(~(s))[ 2 ds/2; ~b(0) = F _ ,  q~(t) = .v, 

{~(s)} o ~.,.<, ~ VR(o) ~ { y; y,  < o}, t > o} 

(R4) There exists 6o ~(0, 2) such that VR(x) is smooth in Uao(F_ ). 

Remark 3.2. For any r >  0, there exists R(r)> 0 such that 

for x~Ur(o)n{y;yl <O} 
tion 3.1 ). 

VR(x) = VR, (x )  

and R, R'>~R(r) (see the proof of Proposi- 
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It is easy to see that the conditions R1 and R2 are satisfied. As for R3 
and R4, see Proposition 3.1 at the end of this subsection and Theorem 2 
in Ref. 20. 

Proof of  Theorem 3.4 (How to arrange the proof of Theorem 1 of 
ref. 22.). As the set G in ref. 22, we can take the set UR(O) for R > Ro from 
(R1)-(R4) above. In the proof of Lemma 3 in ref. (22), one can take VR(x) 
instead of a(x) in ref. 22 and can put K =  {y; VR(y)<<,OC} for sufficiently 
small ~ > 0 from (R4). Then by the argument of the proof of Theorem 1 of 
ref. 22 and the standard method of Freidlin-Wentzell theory, ~t~ the proof 
is complete.QED 

Finally, we show that the condition (R3) is satisfied. 

Proposi t ion  3.1. We have 

lim inf(inf { VR(x);xeOUR(O)C~ {y; y, ~<0}} )/R2 > 0 (3.9) 

Proof. Put h'=min(/l ,  v/2)/2. Take RL > 0  such that for xr  UR,(O), 

(x ,  b(x) ) (  - h l x l  z (3.10) 

which is possible from (2.6). 
For R > R~ and { ~o(s)} o ~.,.~, for which q~(O) = F_,  q~(t) ~ OUR(o) ~ {y; 

y~ <0},  and {cp(s)} o~.,.<, c UR(o)n {y; 3'1 <0},  put 

Then 

T(q~)-sup{s<t;cp(s)~UR,(o)c~{y;y~<O}} (3.11) 

f •  [d~p( s )/ds - b(q~(s))[ 2 ds/2 

~( Iq~(t)l 2 _ lop( T(q0))l 2)/2 = K(R 2 - R~)/2 (3.12) 

which completes the proof. This is true, since for u ~ R  2 and xr  Uric(o), 

lu-b(x)12/2 = sup [ (z ,  u)  - ( b ( x ) ,  z)  -Izl2/2] 
x ci R 2 

>1 ( xx, u) - (b(x), xx)  - I x x l  2/2 

>1 (xx,  u) + IxxlZ/2 >~K(x, u) (3.13) 



48 

from (3.10), and since 

f~ ldq,( s)/ds - O( ~o( s) )[ "- ds/2 

Ito and Mikami 

if 
! 

>>. [dq)(s)/ds - b(q~(s))J-' ds/2 
T~ q, ) 

/> K(~o(s), d~o(s)/ds) ds [from (3.13)] 

([q~(t)J" I~o(T(q~))12)/2 QED 

3.2. P roof  of  T h e o r e m  3.2 

In this subsection we prove Theorem 3.2 by induction. First we prove 
Theorem 3.5, which is a special case of Theorem 3.2 with l = 1. 

Theorem 3.5. For any gE(0, 2) and r > 0 ,  the following holds: for 
any n~N,  

lim P( Y~( t; x, fi ) = n ) = t" exp( - t )/11 ! ( 3.14 ) 
t : ~ 0  

uniformly in x e  U r ( o ) n  {y; ly, I >~2-~} and t>~0. 

We need the following lemma to prove Theorem 3.5, which can be 
proved by the standard argument of Freidlin-Wentzell theory, using the 
strong Markov property of X':(t; x), from Proposition 3.1, 

I . e mma  3.1. There exists t o > 0  such that for any Oe(0,2) ,  r > 0  
and n E N, 

lim P( [X~(r,~,(x; c~), x)l ~> ro) = 0 (3.15) 
c ~ O  

uniformly in x e  U,.(o) n {y; [Yl[ ~> 2 - ~ } .  

Proo f  o f  Theorem 3.5.  We prove it by induction on 17. When n = 0, 
it has been proved in Theorem 3.4. Suppose that the statement of 
Theorem 3.5 is true for n ~< k. Put 

A~,6 = U, . (o)n {y; [y, 1> /2-6}  (3.16) 
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Then 

P( Y~(t; x, f i ) = k  + 1) 

= P ( Y ~ ( t ; x , d ) = k + l , X ~ ( r ~ + l ( x ; d ) , x ) r  (3.17) 

as e ~ 0, uniformly in x e At. ~ and t >/0, from Lemma 3.1. 
The second probabil i ty on the right hand side of (3.17)is  estimated as 

follows: 

P( Y~( t; x, d) = k + 1, X~(r~ + l(X; d), x) ~ Aro. a) 

t "  
= | P(r~,+ ](x; d)/fl ~ ~ ds, X~(r~,+ l(X; d), x) ~ dy) 

J 0  ~ s ~ l  .VEAro.~ 

• e ( ~ ( t  - s )  < r~(y; 6)) 

f2 = P ( r ; +  i(x; 6) / f l " eds )exp[  - ( t - s ) ]  + o ( 1 )  

as e ~ 0, uniformly in x ~ A,. a and t >/0, from Theorem 3.4 and Lemma 3.1; 
and 

Io P(r~ d)/fl ~ ~ ds) exp[  - ( t  - s ) ]  i (.X'~ + 

f2 - P ( r ; + l ( X ; d ) / f f < ~ s ) e x p [ - ( t - s ) ] d s  

f2 = P ( Y " ( t ; x ,  6 ) > ~ k + l ) -  P(Y~(s;x ,  6 ) > ~ k + l ) e x p [ - ( t - s ) ] d s  

= t k+l e x p ( - t ) / ( k +  1)! + o ( 1 )  

as e ~ O, uniformly in x ~ Ar, ,5 and t ~> O, by the assumption on induction. 
Q.E.D. 

Next we prove Theorem 3.2 from Theorem 3.5. 

Proof  o f  Theorem 3.2. We prove it by induction. When 1 = 1, it is 
done by Theorem 3.5. Suppose that the statement of  Theorem 3.2 is true 
when l =  k >/2. Then we only have to show the following to complete the 
proof: for m = n 1(/> 1 ), 171 + I, 

822/85/1-2-4 
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lim P(m<~ Y~( t l ; x , J ) ,  Y ~ ( t 2 ; x , O ) = n  2 ..... Y ~ ( t k + , ; x , J ) = n k + ] )  
~ 0  

= , , - -  [ ( t , ) J e x p ( - t l ) / j ! ] ( t 2 - t t ) " : - J e x p [ - ( t , _ - t , ) ] / ( n , _ - j ) !  

! 

x 1--[ ( t ; - t ; _ l ) " - " ' - '  exp[  - ( t i - t i _ l ) ] / ( n i - n i _ l ) !  (3.18) 
i = 3  

uniformly in x e Ur(o) n { y; I)'11 > / 2 -  a} and 0 = t o < l I < " ' "  < I I < GO. 
Let us prove  (3.18). Fo r  m >/1, 

P(m <~ Y~(tl; x, J),  Y~(t,_; x, J) = n2 ..... Y~(tk + l; x, J)  = nk +l) 

=P(m<~ Y~( t ] ;x , J ) ,  Y ~ ( t 2 ; x , J ) = n 2  ..... Y ~ ( t ~ + l ; X , J ) = n k +  I, 

X'(r~,,(x; J),  x)  e A~o. 6) + o(1) (3.19) 

as e--* 0, uniformly in x~A~.a  and 0 < t ~  < . . .  < t ~ <  oo f rom L e m m a  3.1. 
The probabi l i ty  on the right hand side of  (3.19) is es t imated as follows: 

P(m <~ Y~(tl; x, J), Y~(t2; x, J) = n2 ..... Y~(tk+ i; x, J)  = nk+ 1, 

X~(r~,,(x; ~), x) e A,.0. ~) 

= [ P(r~,,(x; O)/ff  ~ ds, X~(r,~;,(x; J), x )  ~ dy) 
a o  a" ~ II, y E Aro,  ~i 

x P (Y~( t , - - s ;  y, J) = n 2 - - m  ..... Y~(tk+l--s;  y, J ) = n ~ . + l  - - m )  

[ by the s t rong M a r k o v  p roper ty  of  X~(t, x ) ]  

= P(r,~, , (x;J) / f l"sds)( t ,_-s)  '''- .... e x p [ - ( t , _ - s ) ] / ( n , _ - m ) !  

k + l  

x l-I ( t i - t i - ] )  '''-''~-' e x p [ - - ( t i - - t i - t ) ] / ( n i - - n i - I )  ! + o ( 1 )  (3.20) 
i = 3  

as e ~ 0 ,  uniformly in x~A~.  a and 0 < t ]  < . . .  < t t <  oo, again by L e m m a  
3.1 and by the assumpt ion  on induction. 

F r o m  (3.20) we only have to prove  that  

lim c [ "  ~ . .  P(r , , (x ,  g ) / f f  s ds)(t~ - s)"-" .... exp[  - ( t  2 - s) ]/(n2 - m)! 
r 

e ~ O a o  

I/2 

j = m 

[ ( t l)J exp ( - - t l ) / j ! ] ( t2 - - t t ) " ' - - J  e x p [ - - ( t 2 - - t t )  ] / (n2-- j ) !  (3.21) 
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uniformly in x e A ~, ~ and 0 < t ~ < t 2 < ~ ,  which is done as 

;o~ ~)/fl~ ds)(t, s)'- .... exp[ - s ) m ) !  P( r x; E (t~ 3/("2 

= P(r,~,,(x; 6)/fl" ~< tl )(t2 - tl )-2 .... exp[ - ( t  2 - tl ) ]/(n2 - m)! 

f: -- P(r;,(x;(~)/ff <~s) 

x {d[(t_, - s ) " - " '  exp[ - ( t , _ - s ) ] / ( n  2 -m) ! ] /d s }  ds 

t12 

= e x p ( - t 2 )  ~ [ ( t . ) J / j I ] ( t2 - t~)" - -J / (n2- j ) !+o(1)  (3.22) 
j = m  

as e--* 0, uniformly in x ~ A,,~ and 0 < tl < t2 < ~ by Theorem 3.5. Q E D  

3.3 .  Proof  of T h e o r e m  3.3 

In this subsection we prove Theorem 3.3. 

Proof  o f  (I). For  y > 0 and t > 0 take N;,., ~ N sufficiently large so 
that  

tJ exp( --t)/j! ~< y/4 (3.23) 
j = N 7 .  t 

Then from Theorem 3.5, 

P( Y'(t; x, 6) >! Nr, ,) 

= 1 - P (  Y~(t; x, 6 )<~Ny. , -  1) 

<~ 2 ~ tJ exp(--t) / t!  < y/2 
j = N , / ,  t 

for sufficiently small e > 0, uniformly in x ~ A~. ~. Q E D  

Next we prove (II). 

Proof o[ (II). (See ref. 21, p. 134, Lemma 8.2.) For  y > 0 and T >  0, 
take N~,., which satisfies (3.23) with t = T ,  and take i:~(O,y/(4N~,T)). 
Then 
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P(og'( Y~(. ; x, d), ?, T)  >~ y) 

~< P( min (r~,+ ](x; d) - r~,(x; d)) <fl~?) 
O<~k<~ Y~(T;x ,  6) 

<~P( Y~(T; x, d) >t N;, r) 

+ P( Y~( T; x, d) < N~,, T, 

<~ P( Y~( T; x, 6) >/N), T) 

min ( r~ ,+  l(X; ~)  - "/'~r 6 ) )  < t i c ? )  
O~<k~< YC(T; x, d) 

+N~, r max P ( r ~ , ( x ; J ) < ~ f l ~ T , r ~ + ] ( x ; 6 ) - r ~ ( x ; d ) < f l ' ? )  
�9 O ~ k ~ N T . T _  1 

(3.24) 

The first probability in the last part of  (3.24) is less than 7/2, for sufficiently 
small e > 0 ,  uniformly in x ~ A r .  6, in the same way as in the proof  of (I). 

The second probability in the last part of (3.24) is transformed as 
follows: for k = 0 ..... N;,, T-- 1, 

P(r~(x; 6) <~fl~T, r~+ l(x; d ) -  r~.(x; d) < fleE) 

= P(r~.(x; d) ~< fl 'T, r~. + ](x; d) - r~(x; 6) <fl~?, X~(r ~,.(x; 6), x)  ~ Aro, 6) + o( 1 ) 

(3.25) 

as c ~ 0, uniformly in x ~ A,.. 6 from Lemma 3.1. 
The probability on the right hand side of (3.25) is estimated as follows: 

P(r~,(x; 6) ~< fl'T, r~. + l(x; d) - r~,(x; of) < fl~/:, X'(r~.(x; ci), x) ~ A,.o. 6) 

~< sup P(Y~(?; y, 6)>~I)  [ b y s t r o n g M a r k o v p r o p e r t y o f X ' ( t , x ) ]  
)'~ At0, cf 

~< 2 [ 1 - exp( - / : )  ] ~< 2? < 7/(2N~. r) 

for sufficiently small e > 0 from Theorem 3.5. Q.E.D. 
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